
Australian Invitational Informatics Olympiad — Hard Drive 1

Hard Drive

Input File: drivein.txt
Output File: driveout.txt

Time and Memory Limits: 6 seconds, 10 Mb

You work for a large software company, and your business is operating systems. “No machine too
fast,” as you say, “we can always give it something more to do!”

With lawsuits alleging that your operating system is unfairly bundled with your virtual toast
maker and your electronic encyclopedia of witchcraft, you need to distract the public’s attention
with a flashy new product. Unfortunately, lawsuits are expensive and so you have had to fire
all of your technical staff, leaving you with a company of marketers and managers. After much
soul-searching you have hit on a slogan for your new operating system: Divide and Conquer!

In line with your new slogan, your new operating system will partition each hard drive into lots
and lots of little pieces. The more partitions, the faster the operating system! You are in charge of
designing the advertising brochure, and so you need to know just how many different partitioning
possibilities there are.

Your partitioning software works as follows.

• It will only work with a hard drive containing 2n blocks for some n. Initially the hard drive
consists of one large partition.

• The software may take a partition of size k ≥ 2 and split it into two equal partitions of size
k/2, as illustrated below.

• The software may take a partition of size k ≥ 4 and split it into three consecutive partitions
of size k/4, k/2 and k/4 (in that order), as illustrated below.

• Each partition must consist of an integer number of blocks — you cannot split a block into
smaller pieces.

The following diagram illustrates how these operations can be used to split an 8-block hard
drive into consecutive partitions of 1, 1, 4 and 2 blocks.

2 3 4 5 6 7 81 2 3 4 5 6 7 81 2 3 4 5 6 7 81

Your task is, given an integer n, to work out how many different ways a hard drive of 2n

blocks can be partitioned. Note that you are only counting the final partitionings — if the same
partitioning can be achieved in several different ways using the rules above, you should only count
it once.

As an example, the six different ways of partitioning a hard drive of size 22 = 4 are illustrated
below.

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4



Australian Invitational Informatics Olympiad — Hard Drive 2

Since your colleagues who are proofreading the advertising brochure cannot deal with large
numbers, your program must output the answer modulo m for some modulus m ≤ 1000. For
example, there are 2 350 possible partitionings for a hard drive of size 24 = 16. If m = 100, your
program would output the answer 50 in this case.

Hint: The numbers in this problem can grow extremely large, and so it is recom-
mended that you avoid overflow by reducing modulo m during some of your inter-
mediate calculations. For example, instead of a = b5 mod m, you could evaluate
a = ((b3 mod m) × (b2 mod m)) mod m.

You can evaluate k mod m in C/C++ by writing k % m, and in Pascal you can write k

mod m.

Input

Input will consist of a single line containing the integers n and m as described above, separated
by a single space. You are guaranteed that 0 ≤ n ≤ 10 000 000 and 1 ≤ m ≤ 1 000.

Output

Output should consist of a single integer, giving the number of partitionings reduced modulo m as
described above.

Sample Input 1

2 100

Sample Output 1

6

Sample Input 2

4 100

Sample Output 2

50

Scoring

The score for each input scenario will be 100% if the correct answer is written to the output file,
and 0% otherwise.


