Tennis Robot

Input File: tennisin.txt
Output File: tennisout.txt

Time and Memory Limits: 1 second, 1 GB

Your local sports centre has just employed a new robot to help clean up the tennis courts. At the end of the day, the robot collects all of the leftover tennis balls on the court, and dumps them into storage bins for the night. The sports centre has \mathbf{B} bins of varying sizes, numbered from $\mathbf{1}$ to \mathbf{B}. The ith bin is able to hold $\mathbf{A}_{\mathbf{i}}$ balls before it is full.

Today, there are \mathbf{N} balls on the court to be packed away. The robot uses a simple procedure to put the balls away:

- If the 1st bin is not yet full, put one ball into it.
- If the 2 nd bin is not yet full, put one ball into it.
- If the 3rd bin is not yet full, put one ball into it.
- ...
- If the \mathbf{B} th bin is not yet full, put one ball into it.

The robot then repeats these steps over and over again, until all the balls are put away. You know for certain that there is enough space in the bins to store all \mathbf{N} balls. Which bin does the robot put the last ball into?

Input

- The first line of input contains the two integers \mathbf{B} and \mathbf{N}.
- The second line of input contains \mathbf{B} integers. The $\mathbf{i t h}$ of these integers is $\mathbf{A}_{\mathbf{i}}$, describing the number of balls that can fit into the ith bin.

Output

Your program should output a single line containing a single integer: the bin into which the \mathbf{N} th ball is placed.

Sample Input 1

47
5112

Sample Output 1

Sample Input 2

38
444

Sample Output 2

Explanation

In the first sample input, there are $\mathbf{B}=\mathbf{4}$ bins and $\mathbf{N}=\mathbf{7}$ balls to put away.

- The 1st, 2 nd, 3 rd and 4 th balls go into the 1 st, 2 nd, 3 rd and 4 th bins respectively.
- The 5th ball goes into the 1 st bin.
- The robot skips the 2 nd and 3rd bins as they are full. The 6 th ball goes into the 4 th bin.
- The 7 th ball goes into the 1 st bin. This is the last ball, so the answer is 1 .

In the second sample input, there are $\mathbf{B}=\mathbf{3}$ bins and $\mathbf{N}=\mathbf{8}$ balls to put away.

- The 1st, 2nd and 3rd balls go into the 1st, 2nd and 3rd bins respectively.
- The 4 th, 5 th and 6 th balls go into the 1 st, 2 nd and 3 rd bins respectively.
- The 7th and 8th balls go into the 1st and 2nd bins respectively. This is the last ball, so the answer is 2 .

Subtasks \& Constraints

For all test cases:

- $2 \leq \mathrm{B} \leq 100000$.
- $1 \leq N \leq 1000000000$.
- $\mathbf{1} \leq \mathbf{A}_{\mathbf{i}} \leq 1000000000$, for all i.
- $\mathbf{N} \leq \mathbf{A}_{\mathbf{1}}+\mathbf{A}_{\mathbf{2}}+\cdots+\mathbf{A}_{\mathbf{B}}$. This means that the bins will have enough space to fit all \mathbf{N} balls.
- $\mathbf{A}_{\mathbf{1}}+\mathbf{A}_{\mathbf{2}}+\cdots+\mathbf{A}_{\mathbf{B}} \leq \mathbf{1 0 0 0 0 0 0 0 0 0}$. This means that in total, the bins cannot fit more than 1000000000 balls.

Additionally:

- For Subtask 1 (15 marks), $\mathbf{A}_{\mathbf{i}}=\mathbf{A}_{\mathbf{j}}$, for all \mathbf{i} and \mathbf{j}. That is, all the bins are the same size.
- For Subtask 2 (25 marks), $\mathbf{N} \leq \mathbf{1 0 0} 000$.
- For Subtask 3 (40 marks), B $\leq \mathbf{1 0 0 0}$.
- For Subtask 4 (20 marks), there are no special constraints.

There are no hints available for this problem.

