
French-Australian Regional Informatics Olympiad 2013 — Torusia 1

Torusia

Scientists Alison and Bill were on an important scientific expedition for science to Torusia, a newly
discovered donut-shaped planet (yes, the cosmologists are still scratching their heads). During
some standard experiments, the two scientists were separated and freak solar winds destroyed
their communications equipment. They now have no idea how to find each other, however they
each have a machine designed for scientific purposes which they can use to re-unite.

Alison and Bill both view Torusia as a 4096 x 4096 grid, with (0, 0) in the top-left corner.
The grid “wraps around” at the edges so that horizontal lines are in fact horizontal circles and
vertical lines are vertical circles. Hence, the point east of (4095, 34) is (0, 34) and the point north
of (17, 0) is (17, 4095).

Alison perceives her own position as (0, 0) and Bill perceives his own position as (0, 0) however
their absolute positions are different and hence their co-ordinate systems are not aligned. Note
however that they have the same orientation (direction of north, south, east, west) so if Alison is
xA metres east and yA metres south of Bill, then a point Alison refers to as (x, y) would be the
point on Bill’s grid labelled ((x + xA) mod 4096, (y + yA) mod 4096).

Alison has a machine that performs one function:

• mark(x, y), creates an electromagnetic marker x metres east and y metres south of her
position (the cell (x, y) on her grid). Calling mark(x, y) on a cell that already contains a
marker doesn’t create another marker. Alison must ensure that 0 ≤ x, y ≤ 4095.

Bill has a machine that can perform two functions:

• numRow(y) finds the number of electromagnetic markers that lie on the row y metres south
of him. Bill must ensure that 0 ≤ y ≤ 4095.

• numColumn(x) finds the number of electromagnetic markers that lie on the column x
metres east of him. Bill must ensure that 0 ≤ x ≤ 4095.

Each minute, Alison and Bill can use their respective machines to perform one function. Alison’s
machine is a bit faster to start up than Bill’s, so each minute you can assume that her marker is
placed before Bill performs his query.

You are able to send Alison and Bill a program to help Alison place markers and Bill make
measurements so that Bill can determine Alison’s position as fast as possible.

Library

Your code file will interact with functions provided in the downloadable source file science.h.
You must implement the following two functions:

• void alison(); which can make calls to mark(x, y). Note that each time you call mark,
the current time is increased by one minute. You can call mark at most 10 000 times before
exiting your function, otherwise the program will terminate execution.

• void bill(); which can make calls to numRow(y) and numColumn(x). Note that each time
either of these functions are called, the current time is increased by one minute. Bill must
also finally call found(x, y) indicating a belief that Alison is x metres east and y metres
south of Bill. Calling found will terminate execution.



French-Australian Regional Informatics Olympiad 2013 — Torusia 2

Your code should not have a “main” function, this will be supplied by science.h, in addition
to the following:

void mark(int x, int y); which can only be called (directly or indirectly) by Alison.
int numRow(int y); which can only be called (directly or indirectly) by Bill.
int numColumn(int x); which can only be called (directly or indirectly) by Bill.
void found(int x, int y); which can only be called (directly or indirectly) by Bill.

You may assume that all these functions run in constant time.

Compilation

You must add #include "science.h" to the beginning of your code, and make sure the file
science.h is in the same folder as your code.

Experimentation

Whilst Alison and Bill are in theory simultaneously performing their actions, we are able to simulate
this by first running the program “as Alison”, which creates a log file of the cell she marks each
minute, then running the program “as Bill”. The executable created will take one line of standard
input that determines which scientist it runs.

• You can enter one line containing the one character ’A’, which will run Alison’s code and
output to a file mark log. Pro-tip: this file can be useful for debugging!

• You can enter the character ’B’ followed by two space-separated integers xa and ya, repre-
senting Alison’s position relative to Bill. This will run Bill’s code and output the result. You
must run Alison before running Bill, as Bill will require the file mark log to be present.

You may wish to temporarily change the value of the constant SIZE at the top of science.h, to
test your program on smaller grids.

Sample Session

The following sample session is based on this code:

#include "science.h"

void alison() {

mark(1, 100);

mark(2000, 100);

}

void bill() {

int a = numRow(120);

int b = numColumn(904);

int c = numRow(120);

found(3000, 20);

}



French-Australian Regional Informatics Olympiad 2013 — Torusia 3

First, the program is run and the following input is provided to standard input (the screen):

A

The program will run alison(), which makes these function calls:

Function Call Explanation
mark(1, 100) In the first minute, Alison marks the cell 1m east and 100m south of her.
mark(2000, 100) In the second minute, Alison marks the cell 2000m east and 100m south of her.

The program exits successfully and creates a file mark log. We now run the program again and
provide the following input, which places Alison 3000m east and 20m south of Bill.

B 3000 20

The program will run bill(), which makes these function calls:

Function Call Explanation
numRow(120) returns 1, as in the first minute Alison marked a cell 100m south of her, and

she is 20m south of Bill, hence there is one marked cell on the row 120m south
of Bill.

numColumn(904) returns 1, as in the second minute Alison, 3000m east of Bill, marked a cell
2000m east, which is the cell only 904m east of Bill since the grid is 4096m
wide.

numRow(120) returns 2, as there are now two markers on the row 120m south of Bill
found(3000, 20) Through some amazingly lucky guesswork, Bill correctly finds Alison’s position

after only 3 minutes.

Scoring

Your program will be given a score based on the time it takes Bill to find Alison. Specifically, if
found is called with the correct parameters after M minutes:

score =


100, if M ≤ 144
13000
M + 10, if 144 < M ≤ 10 000

0, if 10 000 < M

Here is a table showing ten example scores and corresponding success time required:

Score 11 20 30 40 50 60 70 80 90 100
M 10 000 1 300 650 433 325 260 216 185 162 144

There are no subtasks for this problem. Your total score will be the minimum score your program
received over all test cases.


