River II

Input File	Output File	Time Limit	Memory Limit
standard input	standard output	1.5 seconds	$256 { m MiB}$

The N residents of Ragden reside underground in dingy rectangular hollows far below the extravagant royal palaces of the Great Tree.

Tired of the constant flooding from events such as the *Great Storm* and *Lauren Forgot To Turn Off The Sprinklers*, the residents have asked you to build an artificial underground river through which the storm waters can flow.

The Underground can be described as a rectangle W metres wide, and H metres deep. The point x metres from the left edge of The Underground and y metres below the surface is denoted (x, y).

The *i*-th hollow is defined by the rectangle with top-left corner (a_i, b_i) and bottom-right corner (c_i, d_i) . No two hollows intersect. Hollows may touch on their sides or at corners.

Figure 1: An example with W = 8, H = 6

The river can be thought of as a sequence of points (x_0, y_0) , (x_1, y_1) , (x_2, y_2) , ..., (x_k, y_k) , that form a poly-line.

- The river must start on the surface. That is, $y_0 = 0$.
- The river must end on the bottom of The Underground. That is, $y_k = H$.
- The river must never flow upwards. That is, $y_i \leq y_{i+1}$ for all *i*.
- The river must not intersect the interior of any hollows. The river may touch the sides or corners of the hollows.

Figure 2: The top three rivers are valid. The bottom three rivers are invalid.

Notice that the river splits The Underground into a *left-side* and a *right-side*. If the *i*-th hollow is on the *left-side*, then the residents will generate l_i happiness points. Similarly, if the *i*-th hollow is on the *right-side*, then the residents will generate r_i happiness points. Note that l_i and r_i may be negative.

What is the greatest total happiness you can achieve?

Subtasks and Constraints

For all subtasks, you are guaranteed that:

- $1 \le N \le 100\,000.$
- $1 \le W, H \le 1\,000\,000.$
- $0 \le a_i < c_i \le W$, for all *i*.
- $0 \le b_i < d_i \le H$, for all i.
- $-10\,000 \le l_i, r_i \le 10\,000$, for all *i*.
- No two hollows intersect.

Additional constraints for each subtask are given below.

Subtask	Points	Additional constraints
1	6	All hollows have height 1. That is, $b_i + 1 = d_i$ for all i .
2	23	$W, H, N \leq 100.$
3	14	$W, H \le 1000.$
4	25	$N \le 5000.$
5	28	All hollows have width 1. That is, $a_i + 1 = c_i$ for all i .
6	4	No additional constraints.

Input

- The first line of input contains the three integers N, W and H.
- The next N lines describe the hollows. The *i*-th line contains a_i, b_i, c_i, d_i, l_i and r_i .

Output

Output a single integer, the greatest total happiness you could achieve.

Sample Input

Sample Output

30

Explanation

By drawing the river as shown, we can achieve a total happiness of -9+9+-3+-10+0+40+3=30.

Figure 3: The sample case. Hollows on the left of the river are marked yellow, hollows on the right are blue.