Triple Hunting

In this somewhat silly problem, you must write a program that reads in a list of non-negative integers and identifies all the 'triples' - the multiples of three. For the purposes of this problem, a triple is defined as any number that can be expressed in the form ($3{ }^{*}$ integer). The numbers 0 and 3 are also considered to be triples.

To make things a little more complicated, once you identify all the triples you will need to output their locations in the original list.

Input

The first line of the input will consist of the single integer n, the number of integers in the list. $(1 \leq n \leq 50,000)$ Following this will be n lines describing the list, each containing a single integer between 0 and 2,000, 000, 000 .

Output

If there were any multiples of three in the list, the first line of your output should contain the single integer k, the number of triples found.

The second line should contain k space-separated integers, describing the positions of the triples, in ascending order. For example, if the 5 -th number in the list is a triple, you should output 5 .
If there are no triples in the list at all, you are instead to output Nothing here! on a single line.

Sample Input 1

Sample Output 1

4
2457

Sample Input 2

7
16
49
2
10
28
55
31

Sample Output 2

Explanation

In the first example, four of the integers in the list are triples: the $2 \mathrm{nd}, 4$ th, 5 th and 7 th. (Their values are $12=3 \times 4,9=3 \times 3,3=3 \times 1$, and $30=3 \times 10$.) In the second example there are no triples in the list.

